Step of Proof: mu'_wf
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
mu'
wf
:
A
:Type,
P
:(
A
),
d
:(
x
:
A
. Dec(
n
:
. (
(
P
(
x
,
n
))))). mu'(
P
)
A
(
+ Top)
latex
by ((Auto
)
CollapseTHEN (Unfold `mu\'`
0)
)
0
CollapseTHEN (Subst'
0C
TERMOF{
p-mu-decider
:ObjectId, 1:l, 1:l} ~ TERMOF{
p-mu-decider
:ObjectId, 1:l, i:l} ( 0)
)
latex
0C
1
: .....equality..... NILNIL
0C1:
1.
A
: Type
0C1:
2.
P
:
A
0C1:
3.
x
:
A
. Dec(
n
:
. (
(
P
(
x
,
n
))))
0C1:
TERMOF{
p-mu-decider
:ObjectId, 1:l, 1:l} ~ TERMOF{
p-mu-decider
:ObjectId, 1:l, i:l}
0C
2
:
0C2:
1.
A
: Type
0C2:
2.
P
:
A
0C2:
3.
d
:
x
:
A
. Dec(
n
:
. (
(
P
(
x
,
n
))))
0C2:
(
x
.(TERMOF{
p-mu-decider
:ObjectId, 1:l, i:l}(
A
,
P
,
d
,
x
)).1)
A
(
+ Top)
0C
.
Definitions
s
~
t
,
p-mu-decider
,
Type
,
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
b
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
left
+
right
,
,
Top
,
t
T
,
mu'(
P
)
origin